

TOPOLOGY - III, EXERCISE SHEET 6

Exercise 1.

Let $i : A \hookrightarrow X$ be the inclusion of a subspace A of a space X . Recall that we call A a deformation retract of X if there exists a continuous map $F : X \times [0, 1] \rightarrow X$ such that $F(x, 0) = x$, $F(x, 1) \in A$ for all $x \in X$ and $F(a, 1) = a$ for all $a \in A$.

- (1) Show that the inclusion map i induces isomorphisms $H_n(A) \rightarrow H_n(X)$ for all n .
- (2) Using (1) show that $H_n(X, A) = 0$ for all n .
- (3) Using (2) show that if given a triple (X, B, A) with $A \subseteq B \subseteq X$ and such that A is a deformation retract of B then we have isomorphisms $H_n(X, A) \cong H_n(X, B)$ for all n which are induced by the inclusion of pairs $(X, A) \hookrightarrow (X, B)$.

Hint: What is the long exact sequence in relative homology associated to a triple?

- (4) Let X be a topological space and let Y, A, B be subspaces such that B is contained in both A and Y . Suppose the pair (Y, B) is a deformation retract of the pair (X, A) (how should this be defined?), prove that the inclusion $(Y, B) \hookrightarrow (X, A)$ induces isomorphisms of pairs $H_n(Y, B) \cong H_n(X, A)$ for all n .

Exercise 2. *Homology of spheres* .

We say that a pair (X, A) of a space X and a non-empty closed subspace $A \subset X$ is a good pair if A is the deformation retract of some open neighbourhood in X containing A . Recall that we proved the following result in the lectures using excision:

Let (X, A) be a good pair then we have isomorphisms $H_n(X, A) \cong H_n(X/A, A/A) \cong H_n(X/A)$ induced by the quotient map for all $n > 0$.

- (1) Show that $(D^n, \partial D^n)$ is a good pair for all n , where D^n is the closed unit disc in \mathbb{R}^n .
- (2) Observe that $D^n/\partial D^n$ is homeomorphic to S^n . Using the long exact sequence of relative homology, show that for $n > 0$ we have that $H_k(S^n) = \mathbb{Z}$ if $k = 0$ or n and $H_k(S^n) = 0$ otherwise.

Hint: Induct on n .

Exercise 3. *Relative homology as absolute homology*

Let X be space and $A \subseteq X$ be a subspace then we define the the mapping cone of the inclusion $A \hookrightarrow X$ to be the space $X \cup CA$. That is the space obtained by gluing X to the cone CA at A . The goal of this exercise is to show that for all $n > 0$ we have that $H_n(X, A) \cong H_n(X \cup CA)$.

- (1) Show that $H_n(X \cup CA) \cong H_n(X \cup CA, CA)$ for all $n > 0$.

Hint: Recall that the cone of a space is contractible.

- (2) Using excision show that $H_n(X \cup CA, CA) \cong H_n(X \cup CA - \{p\}, CA - \{p\})$, where p is the vertex of the cone.
- (3) Finally show using 1.(4) that $H_n(X \cup CA - \{p\}, CA - \{p\}) \cong H_n(X, A)$.

Exercise 4. *Homology of Suspension*

Given a topological space X , the suspension of X denoted by SX , is the quotient of $X \times [-1, 1]$ given by contracting the subsets $X \times \{0\}$ and $X \times \{1\}$ to (different) points. One can also think of the suspension as the space obtained by gluing two copies of the cone CX along X . We denote the two copies of the cone in SX to be C_+X and C_-X . The goal of this exercise is to show isomorphisms of reduced homology groups $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$ for all n .

- (1) Using the long exact sequence of relative (reduced) homology show that $\tilde{H}_{n+1}(SX) \cong H_{n+1}(SX, C_-)$ for all n .
- (2) Using the long exact sequence, show that $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(C_+, X)$.
- (3) Conclude using excision.

Exercise 5. *Counting simplices in a barycentric division.*

We call a k -simplex appearing in the barycentric subdivision of the simplex Δ^n irreducible if it does not properly contain any other k -simplex. Show that irreducible k -simplices in the barycentric subdivision of Δ^n are in bijection with length k sequences $\sigma_0 \subsetneq \sigma_1 \subsetneq \dots \subsetneq \sigma_k$. Here the σ_i are faces of the original simplex Δ^n . So in particular, observe that the n -simplices obtained from a barycentric subdivision of Δ^n correspond to sequences of containments of faces of Δ^n of length n .